GA - CNNC를 실은 꼬마자동차[2] - 입력과 출력, 교차

5. 꼬마자동차의 신경망 입력
꼬마자동차가 알아야 할 정보는, 바로 앞의 블럭정보, 그리고 연료가 어디 있는지에 대한 정보입니다.
꼬마자동차 CNNC의 입력노드 중 3개는 앞쪽에 어떤 장애물이 있는지(있으면 1, 없으면 -1), 마지막 하나는 연료의 위치를 -1~+1 사이의 float값으로 입력합니다.

procedure Detect(Car car, StoneRoad road)
.. cl := car.Locate.Len
.. cw := car.Locate.Wid

.. // 앞쪽 3칸 블럭정보
.. if road[cl - 1][cw - 1] == ROCK then
..... SetCharge(
car.CNNC, 0, 1) // 0번셀에 입력
.. else
.....
SetCharge(car.CNNC, 0, -1)
.. end
.. if road[cl - 1][cw + 0] == ROCK then
.....
SetCharge(car.CNNC, 1, 1) // 1번셀에 입력
.. else
.....
SetCharge(car.CNNC, 1, -1)
.. end
.. if road[cl - 1][cw + 1] == ROCK then
.....
SetCharge(car.CNNC, 2, 1) // 2번셀에 입력
.. else
.....
SetCharge(car.CNNC, 2, -1)
.. end

.. // 기름통 위치정보(차에서 가장 가까운)
.. fl := road.Fuel(car).Locate.Len
.. fw := road.Fuel(car).Locate.Wid
..
SetCharge(car.CNNC, 3, (fw - cw) / (fl - cl)) // 3번셀에 입력
end

6. 꼬마자동차의 신경망 출력
신경망 출력을 꼬마자동차의 움직임으로 바꾸기 위해 3개의 출력노드를 사용합니다. 그리고 각 출력노드의 출력양에 따라 직진할지 왼쪽이나 오른쪽으로 움직일지 결정하는 것입니다.
그러나 신경망의 특성상 가능하면 노드수를 줄이는 것이 최적화시키는데 도움이 됩니다. 여기서는 출력노드를 두개로 만들어, 더 강한 출력을 보이는 쪽으로 이동시키도록 하겠습니다. 즉,

procedure Action(Car car, StoneRoad road)
.. left = 0
.. right = 0
.. l := GetCharge(car.CNNC, 0);
.. r := GetCharge(car.CNNC, 1);
.. if l > 0 then // 왼쪽으로 움직이려는 경향
..... left := left + l
.. else // -왼쪽(즉 오른쪽)으로 움직이려는 경향
..... right := right - l
.. end .. if r > 0 then // 오른쪽으로 움직이려는 경향
..... right := right + r
.. else // -오른쪽(즉 왼쪽)으로 움직이려는 경향
..... left := left - r
.. end
.. // 출력이 강한 쪽으로 이동
.. rnd := Random(0, 2)
.. if left > rnd then
..... if right > rnd then
........ MoveForwar(car)
..... else
........ MoveLeft(car)
..... end
... else
..... if right > rnd then
........ MoveRight(car)
..... else
........ MoveForwar(car)
..... end
.. end
end


출력노드를 하나로 해 놓고, +1에 가까울수록 왼쪽으로, -1에 가까울수록 오른쪽으로 움직이도록 할 수도 있지만, 생각만큼 수렴이 잘 되지 않더군요. 우선은 출력노드 두개짜리로 실행해 봤습니다.

7. 적응도 계산
위와 같은 식으로 256개의 꼬마자동차와 64개의 돌길 개체를 만듧니다. 이 256개의 꼬마자동차 각각은 64개의 돌길을 통과하고 각 꼬마자동차돌길의 적응도를 결정합니다.
꼬마자동차의 적응도 : 평지로 진입할 때마다 10점추가, 장애물을 통과할때 10점감점
돌길의 적응도 : 자동차가 기름을 먹으면 5점감점, 장애물로 진입하면 10점추가

8. 교차
꼬마자동차의 경우는 앞의 XOR회로와 같은 일반적인 CNNC식 교차를 사용했습니다.
돌길의 경우는 길 전체를 길이 100의 선형유전자로 간주하고 일반적인 일점교차를 사용했습니다.

procedure CrossOver(StoneRoad a, StoneRoad b)
.. cut := Random(1, 99)
.. for l := 0, cut do
..... for w := 0, 11 do
........ tmp := a[l][w]
........ a[l][w] := b[l][w]
........ b[l][w] := tmp
..... end
.. end
end

9. 돌연변이
돌연변이 역시 꼬마자동차의 경우에는 CNNC의 돌연변이 루틴을 사용합니다.
돌길의 돌연변이는 두 단계로 이루어집니다. 첫째, 일정한 확률로 장애물을 만들기(또는 장애물을 없애기), 둘째, 기름통 위치 바꾸기입니다.

procedure Mutantation(StoneRoad gene)
.. for l := 0, 99 do
..... for w := 1, 10 do // 가장자리는 장애물로 유지
........ if MutantRate then
........... if gene[l][w] == ROCK then
.............. gene[l][w] := ROAD
........... else if gene[l][w] == ROAD then
.............. gene[l][w] := ROCK
........... end
..... end
.. end

.. for l := 0, 99 do
..... for w := 1, 10 do // 가장자리는 장애물로 유지
........ if gene[l][w] == FUEL then
........... if MutantRate then
.............. gene[l][w] := ROAD
.............. gene[l][Random(1, 10)] := FUEL
.............. break // w 루프 탈춮
........... end
........ end
..... end
.. end
end

10. 재생산
256개 꼬마자동차들이 모두 64개 돌길에서 달려 본 후 꼬마자동차돌길을 재생산합니다. 역시 꼬마자동차의 경우는 CNNC의 재생산 루틴을 사용했으며(이 경우 상위 8개의 꼬마자동차를 다음 세대에 그대로 복사하는 Elitism을 사용했습니다.)
돌길의 경우에는 T==0.95, Round==4인 토너먼트법(임의로 24=16개의 돌길을 고른 후 95%의 확률로 적응도 높은 쪽이 이기는 토너먼트를 4회 반복)으로 재생산시켰습니다.

댓글 없음:

댓글 쓰기